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Abstract. The thermal regime in planetary regoliths involves three processes:
propagation of visible radiation, propagation of thermal radiation, and thermal
conduction. The equations of radiative transfer and heat conduction are formulated for
particulate media composed of anisotropically scattering particles. Although the equations
are time dependent, only steady state problems are considered in this paper. Using the
two-stream approximation, solutions are obtained for two cases: a layer of powder heated
from below and an infinitely thick regolith illuminated by visible radiation. Radiative
conductivity, subsurface temperature gradients, and the solid state greenhouse effect all
appear intrinsically in the solutions without ad hoc additions. Although the equations are
nonlinear, approximate analytic solutions that are accurate to a few percent are obtained.
Analytic expressions are given for the temperature distribution, the optical and thermal
radiance distributions, the hemispherical albedo, the hemispherical emissivity, and the
directional emissivity. Additional applications of the new model to three problems of
interest in planetary regoliths are presented by Hapke [this issue].

1. Introduction

The temperature distribution in the upper layers of the re-
golith of a planet is important for two reasons: this region is the
one sampled by remote measurements of the thermal radiation
emitted by a planet, and the temperature of these layers con-
stitutes the boundary condition for thermal models of the

deeper interior. However, few of the published thermal models
for this region treat radiation adequately. The classical analysis
by Wesselink [1948] neglected both optical and thermal radia-

tion except as a boundary condition, as did Spencer [1990] in

his important discussion of the effects of surface roughness.
Usually, when thermal radiation is included its only effect is
assumed to be a term proportional to T 3, where T is the
absolute temperature [e.g., Henderson and Jakosky, 1994]

(however, notable exceptions are papers by Conel [1969] and
B. Henderson and B. Jakosky (Near-surface thermal gradients
and mid-IR spectra: A new model including scattering and
application to real data, submitted to Journal of Geophysical
Research, 1 [1995]). This assumption is a good approximation

for the deep interior, where thermodynamic equilibrium pre-
vails, but is incorrect near the surface, where the radiation

escapes to space and is not in equilibrium with the medium.
Although the solid state greenhouse model of Brown and Mat-
son [1987] allows visible sunlight to penetrate into the medium,
it does not include the effects of scattering; hence the discus-
sions in their paper are incomplete. This paper uses the heat
equation and the equation of radiative transfer to describe the
flow of energy within a particulate medium. The effects of both
visible and thermal radiation on the temperature distribution
are included, in addition to ordinary solid state conductivity.
Thus radiative conductivity and the solid state greenhouse
effect appear intrinsically in the model.

In section 2 the basic equations that govern the thermal and
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radiative conditions are introduced. For maximum generality,
the quantities that appear in these equations are then reduced
to dimensionless form. The time-independent equations are
solved in section 3 for a particulate medium of finite thickness
whose lower boundary is held at a fixedtemperature, and in
section 4 for a semi-infinite medium in equilibrium with inci-
dent sunlight. The distribution of temperature and radiance
with depth is calculated for several representative cases. As
with my previous radiative models, quantitative analytical so-
lutions are derived which, although approximate, retain the
essential physics and are sufficiently accurate for most plane-
tary remote sensing applications.

Only time-independent problems are treated in this paper.
Although the differential equations for the general time-
dependent case are given, their solutions will be considered in
a separate paper (B. Hapke, manuscript in preparatiOn, 1996).
Using this model, three problems of interest in planetary re-
mote sensing are treated by Hapke [this issue].

2. Basic Equations

2.1. Assumptions and Notation

The system that will be considered in this paper is a semi-

infinite, horizontally stratified, particulate medium in a vac-
uum, in equilibrium either with sunlight incident on its upper
surface or with a lower boundary held at a fixed temperature.

The particles of the medium are assumed to be irregular in
shape, randomly positioned and oriented, with their light scat-
tering and thermal properties independent of depth. An exact,
quantitative description of the propagation of radiation
through such a medium is beyond present capabilities, even
with the aid of modern high-speed compUters. Hence a num-
ber of simplifying assumptions are necessary. The most impor-
tant assumption is that the radiation fields in the medium can
be described by the equation of radiative transfer, In principle,

this equation applies only to radiation propagating through a
continuous medium whose elements do not interact coher-

16,817



16,8i8 HAPKE: ENERGY TRANSFER MODEL

•7

*=0

Z

\ix i

z+dz --

Z

Figure 1.

Ix(z,_,t) I

I

Schematic diagram of the geometry of the model.

ently. However, Hapke [1981, 1993a] has argued that in a

random particulate medium most coherent effects are negligi-

ble and has shown that solutions of the equation provide rea-

sonable descriptions of the bidirectional reflectances of plan-

etary regoliths in the visible. Goguen [1996] has compared

exact and approximate solutions of the radiative transfer equa-

tion with measurements on a medium of microspheres whose

scattering properties are known and found reasonable agree-

ment. Moersch and Christensen [1995] also found that models

based on the radiative transfer equation predicted the spectral

emissivity of powders reasonably well. Hence this assumption

has empirical support.

The notation and nomenclature used in this paper are sim-

ilar to those of Hapke [1993a], but with necessary additions and

modifications. For convenience and reference, quantities are

listed in the notation section at the end of the paper. A sub-

script A denotes that a quantity is wavelength-dependent, while

a subscript v or T denotes that the quantity is averaged over

the visible or thermal infrared spectral region, respectively; an

asterisk denotes a reduced quantity.

The reduced quantities are defined as follows:

E*(z) = _]Ex(z), E*;(z) = _Y_v(z),

E_(z) = _ET(z).

4 *
= GoT;/_rE rkq (o-0/7r) TrlE rkT, = 3 *

(see below).

R • • • • 2 2= Ev_JET_ T= E viE r= dzJdzr

(see below).

T, is the reference temperature that characterizes the par-

ticular system.

T (rr, t*) = T(ZT, t)/T_.

The diffusion time is t o = pC/E_-Zk

t* = t/tD.

w*_= (1 - #x)wxlC],,, w: = (1 - #,,)w,,lC_,

w? = (i - _)wdC_.

* * = q_r(rr, q_r(r,q_,,(r,,, t*) q%(%,, t)lJ,,, * * t*) = t)l(m,T4Hr).

A,p*(r*,, t*) = A_%(r,,, t)/Jo,

Aq_(1-_, t*) = Aq_T(_', t)l(croT41rr).

* (1 -- W_) 1/2 * (1 -- *'1/2Tx = = Yxl_x, Y,,= w_) = %,IL,,

v-_= (] - w9 '/_ = vd':T.

* : * 2_x ,:]_, u.,,= L,u., _,= _.

t_0_= _.2_o' • _ 2_,,,,- 'L,_o, J*_= _o.

dz_ = _2dr, dr,: = _2_dt_, d_r* = _2rdrr.

If visible irradiance is incident, choose Tr as the blackbody

radiative equilibrium temperature, T_ = (_rJv/_ro)_/4, so that

q = JJE*TkT, = o.oJ v31a/wE*Tk," ifJ_ is the solar irradiance,

then q = O-off3/4/_'E*}.kD 3/2, where S° is the solar constant

and D is the distance to the Sun in AU. If the particle prop-

E v/E r constant,erties do not change with depth, so that * * is

then R = r*,/r*r at all Optical depths. It is usually more

convenient to choose rT as the depth variable, but r T and r,*

may be readily interconverted using R.

2.2. Equations

The geometry is shown in Figure 1. The wavelength-

dependent equation of radiative transfer for light that has been

scattered one or more times within the medium, and including

both external and thermal emission sources, is

Olx(z, 12, t)
cosa9 - Ex(z)Ix(z, _, t)

OZ

'L+ _ Ix(z, 12', t)Gx(z, 12', _) dO'
_r

JaF(t)

+ _ Gx(z, 12o, 12)

• exp ---_ Ex(z') dz' + KxrrUx[T(z, t)], (1)

where Ix(z, 12, t) is the spectral radiance (power per unit area

per unit steradian per unit wavelength interval at elevation z

traveling in direction fZ at time t and wavelength A), a9 is the

angle between 12 and the z axis, Ea(z) is the volume extinction

coefficient at elevation z and wavelength A, Ga(z, 12'; 12) is

the volume coefficient at location z and wavelength A for scat-

tering radiance from direction _r - 12' into direction _, Jx is

the spectral irradiance from the source, F(t) describes the time

dependence of the source irradiance, t,o(t) is the cosine of the

angle of incidence, Kx(z) is the spectral Volume absorption

coefficient at location z and wavelength A (by Kirchhoff's law,

equal to the emissivity), and Ux(T) is the Planck function for

the power emitted per unit area per unit wavelength interval

from a blackbody at temperature T,

Ux(T(z, t)] = [2rrhocolhS][e h`'_''/_'xr(z'') - 1]-', (2)
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where ho is Planck's constant, Co is the speed of light in vac-

uum, ko is Boltzmann's constant, and T(z, t) is the absolute

temperature.
In addition to the radiative transfer equation, the tempera-

ture must also satisfy the heat equation

OT(z, t) 0 l[ k OT(z' t)
pC Ot - Oz Oz

+ K_(z)J_F(t) exp -_ E.(z') dz' dh

+fK_(z) f4 Ih(z,_,t) dgldh
h _v

f- K_(z) -- Ua[T(z, t)] d_ dh, (3)

,_ zr

where p is the bulk density, C is the specific heat per unit mass,

k is the thermal conductivity, and Kx(z ) is the spectral volume

absorption coefficient. The parameter k is the intrinsic, solid-

state thermal conductivity of the medium only and does not

include radiative heat transfer, which is specifically accounted

for by the thermal radiance.

The term on the left-hand side of (3) describes the rate of

change of heat content per unit volume in a layer of thickness

dz at depth z. The first term on the right-hand side of (3) is the

difference between the heat conducted into a layer at depth z

and the heat conducted out. The second term on the right

describes the source of heat due to unscattered light from the

source that has penetrated to z and been absorbed there. The

third term is the scattered radiance absorbed at depth z, while

the fourth term describes the loss of heat by thermal radiation

from the particles in the element.

The heat equation is coupled to the radiative transfer equa-

tion only through integrals over wavelength, rather than the

spectrally resolved radiance. In a medium illuminated by a

source of visible light, such as the Sun, the radiance is appre-

ciable in only two spectral regions, the visible (including the

near-UV, visible, and near-IR) and the thermal IR, and the

temperature distribution is determined by the integrals of the

spectral radiance over those two regions. In many problems of

interest the two wavelength intervals are sufficiently separated

that the area of overlap contributes little to the integrals. This

assumption will be made here. Note that this assumption does

not preclude treating regions of the spectrum where both vis-

ible and thermal radiation are important in the spectral radi-

ative transfer equation [e.q., Hapke, 1993a, b], only that such

regions contribute little to the integrals over wavelength.

The system of coupled partial differential equations will be

solved by the following procedure. The equation of radiative

transfer will be converted into two differential equations by

integrating over the visible and thermal wavelength regions

separately. Since the resulting equation governing the visible

radiation does not contain the temperature, it may be solved to

give the visible radiance as a function ofz. This solution will be

inserted into the heat equation. The coupled heat equation

and thermal radiative transfer equation will then be solved

simultaneously to give the temperature and thermal radiance

distributions. Once the temperature is known, it can be in-

serted into the source function Ua(T) in the spectral radiative

transfer equation (1), which can be solved to give the radiance

at any wavelength.

The equations will be further simplified by introducing wave-

length-averaged parameters as follows. Integrating the radia-

tive transfer equation over the visible portion of the spectrum

gives

0fvislble l h( z , 1_, t) d h
cosO

Oz

(
-] E_(z)l_(z, _, t) dh + "" ".

J visible

Since the visible radiance consists of scattered light from the

source, it has a spectral distribution similar to that of the

source Ja but modified by departures from a gray body caused

by absorption bands in the medium. In order to make the

equations tractable, it will be assumed that to a sufficient ap-

proximation, the various parameters in the visible radiative

transfer equation may be replaced by their averages over the

visible portion of the spectrum weighted by the spectrum of the

source. Thus, for example, the first term on the right-hand side

of the integrated equation can be written

fv E_(z)I_(z' l)' t) dh = E_'(z) fV I_(z' p_' t) dh',_ib,_isible

where Ev(z) is the average visible extinction coefficient,

E ,(z =fv v Ia(z,_,t) dA
isible isible

Similarly, the IR radiance at any location in the medium has

a spectral distribution similar to the Planck function of a black-

body at the local temperature, modified by any absorption

bands in the medium at thermal IR wavelengths. Again, in

order to make the problem tractable, it will be assumed that

the parameters in the IR radiative transfer equation may, to

sufficient approximation, be replaced by their averages over the

IR portion of the spectrum weighted by the Planck function of

a body at a reference temperature T_ that is characteristic of

the system. For instance, in a medium illuminated by visible

radiation, T_ might be the radiative equilibrium temperature,

or if no visible source is present, as in a laboratory experiment,

T_ might be the temperature of the source supplying heat to

the medium. Thus, when the radiative transfer equation is

integrated over the thermal IR, the extinction coefficient is

replaced by its average thermal value:

Er(z)=f E_(z)I_(z,_,t)dh/f Ia(z,_t,t) dh
thermal thermal

:ft, .... ,E?_(z)Ua(Tr)d'_'/fth .... I Uh(Tr) d_'"

Other parameters that appear in the wavelength-integrated

visible and thermal-IR equations of radiative transfer will be
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replaced by their similarly averaged values. This procedure will

not introduce serious errors if the reflectance spectrum of the

medium is relatively bland in the visible and thermal IR near

the maxima of Jx and Ux(Tr). However, if broad spectral

features of large contrast are present there, the spectrum of

Ix(z , 12, t) could be appreciably different fromJ x or Ux(Tr),

which could cause wavelength-averaged parameters to be un-

representative of their true values.

In this paper it will be assumed that wavelength averaging

each parameter, as described above, is valid. Let Iv(z, 12, t)

and It(z, 1_, t) be the wavelength-integrated visible and ther-

mal-IR radiances, respectively. Let a subscript v on any other

quantity denote the average value of that quantity weighted by

the spectrum of the source of visible radiation integrated over

wavelength. Let a subscript T on any other quantity denote the

average value weighted by the Planck function of a blackbody

at some temperature that characterizes the system integrated

over wavelength.

Then the equation of radiative transfer for visible radiation

becomes

cosO
3I_(z, 12, t)

OZ
- E_(z)I_(z, 12, t)

ii+ _ I,,(z, 12', t)Go(z, 12', 12) d12'
_r

1

+ J_F(t) _ G,,(z, f_o, 12)

( fz )• exp -_ Eo(z')dz' .

Let "G = f_ E v(z') dz' be the optical depth for visible light.

Putting G _( z, 12', 12) = S v( z )p v( z, 12', 12), w o( z ) =

Sv(z)/E_(z), dividing by Ev(z ), and making G, the spatial

variable, this equation can be written in the following form:

cosO
air(to, 12, t)

'7"v

- I,,('G, 12, t)

wo(':o) f4+ _ lo(%, 12', t)p_,(%, g') d12'

w_(%,) - _e ,,¢_,,,(o
+ J_F(t) _-_ Po('G, vo: (4)

where 9' is the angle between _r - 12' and 12, 90 is the angle

between 12o and 12, Sv(z) is the visible scattering coefficient,

p v(z, 12', 1)) is the visible phase function, and wv(z) is the

visible single scattering albedo.

Since

(5)

where tro is the Stefan-Boltzmann constant, the wavelength-

integrated equation of radiative transfer for thermal radiation

is

cos0
Mr(Z, 12, t)

OZ
- Er(z)Ir(z, 12, t)

if+ _ IT(Z , 12', t)Gr(z, 12', 12) d12'
4_r

+ Kr(z) o_o T4(z ' t).
7r

Let $r = f_ Er(z') dz' be the optical depth for IR radiation.

Putting Gr(z, fY, 12) = Sr(z)pr(z, 12', 12), wr(z) =

Sr(z)/Er(z), _r(Z) = Kr(z)/Er(z); dividing by Er(z);
and making _'r the spatial variable, this equation can be written

in the form

OIT(rr, 12, t) Wr(':r)

cosO Orr - -Ir('rr, 12, t) + 4_

• f4_r IT(TT' "Q''' t)pT(TT' g') df_'

+ %r(l"r) O'o T4(.rr ' t), (6)
"/T

where St(z) is the thermal scattering coefficient, pr(z, 12',

12) is the thermal phase function, Wr(Z) is the thermal single

scattering albedo, and %r(z) is the volume emissivity.

Similarly, the heat equation is

OT(z,t) 0 I OT(z,t)] +Kr(z)f4 ir(z, 12, t) d12pC Ot - Oz k Oz

f4 °'° T4(z' t) dlq- KT(Z)

(1I: I+ K,,(z)J_F(t) exp /xo(t) E,,(z') dz'

+ K,,(z) f4 I_(z, 12, t) dO,

which can be written

Pc at Oz k aT(z,t)]- _O_-z j + Kr(z) IT(Z, _, t) d12

f4 O'° T4(Z, t)] d12 + K_(z)JF(t)e ''/_- KT(Z)

+ K_(z) f4¢ I,,(z, 12, t) d12.
(7)

Equations (4), (6), and (7) are the fundamental equations to

be solved. It will be assumed that all of the quantities in these

equations, except the radiances and temperature, are indepen-

dent of z and T. This system of equations will then be solved

using the two-stream method. In this approximation, the radi-

ative transfer equation is integrated with respect to solid angle

separately over the upward going (0 < O < _-/2) and downward

going (7r/2 < O < 70 hemispheres, and each quantity in each

integral is replaced by its average value in that hemisphere. See
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Hapke [1993a] for details. Anisotropic scattering is taken into

account by the hemispherical asymmetry parameter /3. This

quantity is defined such that a fraction (1 + /3)/2 of the light

incidence on a particle from any direction within an upward

going or downward going hemisphere is treated as scattered

uniformly forward into the same hemisphere into which the

light was traveling, and a fraction (1 -/3)/2 treated as scattered

backward uniformly into the opposite hemisphere.

Let Iv,(%, t) and/v2(q'v, t) be the hemispherically aver-

aged upward going and downward going visible radiances, re-

spectively,

1 _7r12
= I,,(%, 12, t) dO; (8a)

I,,,(r,,, t) _-o=0

I_2(%, t) = _ I,,(%, f_, t) dO.
ag=_r/2

(8b)

The result of hemispherical averaging of (4) for the visible

radiation consists of two coupled equations:

1 0I_,(%, t)

2 0 % [ wv ]--- 1-2-(1+/3,) L,,(%,t)

W v Wv

+ _- (1 - /3,,)I,,2(%, t) + JoF(t) _ (1 - /3_)e -''/_'('), (9a)

and

10I,,2('G,, t)

2 0 %,
Wv ]- 1 - _- (1 + /3,) I,,z(%, t)

W v Wv

- 2- (1 - /3_)I,,,(%, t) + J,,F(t) _ (1 + /3_)e -*''/''(', (9b)

where the factor of +-V2 on the left-hand side of (9a) and (9b)

is the average value of cosO in each hemisphere. Let

q_,,(%,, t) - [I_,,(%,, t) + I,a(%, t)]/2; (10a)

Aq_,,(%, t) = [1,,,(%, t) I,,2(%, t)]/2; (10b)

_p_(%, t) is the spherically averaged radiance in the medium at

optical depth % and time t. By alternatively adding and sub-

tracting (9a) and (9b), they can be put into the form

W ,, e__dt,o(o,1 Oaq_(%,, t) (1 w,,)_p_(r,,, t) + J,,F(t)

2 0% (lla)

and

1 Oq_v(r,,, t)

2 0%
-- - (1 - /3vw_,)A_p,,(_p,,, t)

Wv

- J,,F(t) 4_/3"e-"1_'(')' (llb)

Let 3',, - (1 - w,,) '/2 and G, = (1 - /3,,w,,) '/2. Then (llb)

can be solved for A%,,

10qG(%, t) J_,F(t) w,,/3,o__,./_,,_,) 12a)

Differentiating (12a) with respect to % and substituting the

result into (11a) gives

1 02_v(Tv, t)

"4 Or_
2 2 w,,( /3_e__,./_,,(,)= G%_o,,(r, t) -JoF(t) _ _2 + 21z0]

(lZb)

Similarly, by letting

= Ir(rr, lq, t) dlq,
In('rr, t) _ -o=0

(13a)

Ir2(rr, t) = _ Ir(rr, D,, t) dO,
O=_r/2

(13b)

_Or(Zr, t) = [ITl('rT, t) + Irz(rr, t)]/2, (14a)

Aq_r(rr, t) = [In(rr, t)] - ln(rr, t)]/2, (14b)

and assuming that the particles of the medium radiate isotro-

pically, the IR radiative transfer equation can be put into the

form

10a_r(rr, t)_ (1-Wr)_r(rr, t)+%r-_T4(rr, t),

-2- Orr (15a)

10pr(rr, t)
- (1 - /3rwr)Aq_r(rr, t), (15b)

2 Orr

Similarly, letting Yr = (1 - Wr) _/2 and _r = (1 - /3rWr) 1/2

and realizing that %r = y2, equations (15a) and (15b) can be

put into the form

1 O_r(rr, t)

kq_r(rr, t) -- 2¢22r Orr ' (16a)

and

1 O2qor(rr, t) = 2 2 grYr_ T4(rr, t). (16b)4 Or 2 _rYrq_r(rr, t) - _2 2 0"0

Finally, the heat equation can be written in the form

OT(z, t) 0 [ OT(z, t)]pc Ot - Oz k O_

+Er(z)y24rr[q_r(Z, t) -- --°'°T4(Z'rr t)]

+ E,,(z)y2,[J,,f(t)e -''/_'(' + 4_rq_,,(z, t)]. (17)

In order to solve (12), (16), and (17), six boundary condi-

tions must be specified. Three are that the temperature and

radiances must be finite everywhere, including z -+ oo if the

medium is infinitely thick. If the medium is of finite thickness

then conditions on the lower boundary must be given (see

section 3). Two more result from requiring that there be no

sources of visible or IR radiance above the r = 0 level, except

for the collimated irradiance J,,, which is included as a source

term in the equations, and is not a boundary condition. This

requires

1,2(0, t) = O, (18a)

or

qG(O, t) = A_G(O, t), (18b)

and
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In(0, t) = 0, (19a)

or

q_r(0, t) = A_or(0, t).
1 * *0q_ ,(r,, t*)

(19b) * *
A_o _(r _, t*) 2 Or*

The remaining boundary condition on T comes from the re-

quirement that the only flux of heat crossing the r = 0 bound-

ary is carried by thermal radiation and none by conduction.

However, the conducted heat flux, kOT/Oz, must be continu-

ous across any horizontal plane, including the upper surface of

the medium. Since k = 0 above the surface, but not below it,

this requires that

aT

0-z (0, t) = 0 (20)

as the surface is approached from below.

(These boundary conditions at the surface of the medium

apply only to bodies without atmospheres. If the medium is in

an atmosphere, then at the surface the heat flux conducted

through the medium must be continuous with the flux con-

ducted through the air above the surface. Also, the downward

radiances 1,, 2 and IT2 at the surface must be equal to the visible

and IR radiances scattered and radiated downward by the

atmosphere.)

An additional requirement on the solutions arises from

physical considerations. Deep within a medium, far from any

boundaries, the thermal radiation must be in equilibrium with

the temperature of the material there. This requires that

_OT(Z, t) z--_->o'0T4(z, t)/_. (21)

2.3. Equations in Reduced Form

In order to make these equations as general and simple as

possible, it is desirable to reduce them to nondimensional form

by scaling all quantities to reference quantities that character-

ize their magnitudes for each specific case. This has already

been done in the radiation equation for the distance variable

by replacing it with the optical depths % or rr, which are

distance in units of the extinction lengths, LE_, = E_-' or

Let = E_ _. A natural quantity to use to scale the visible flux

is the incident irradiance J,,. The temperature may be scaled to

some reference temperature Tr that characterizes the system,

and the thermal flux may be scaled to the thermal radiance

troT4/cr inside a cavity at that temperature. If the source of

visible radiation is sunlight, it is convenient to choose T r as the

blackbody radiative equilibrium temperature given by Jv =

troT4/_r. Although the period of rotation P of a body might be

used to scale the time variable, the equations become simpler

if the diffusion time t D = pC/_2E2k is used instead.

In addition, if the particles of the medium are not isotropic

scatterers, the equations may be further simplified by using

similarity relations. These are reduced single scattering albe-

dos and optical depths that convert the equations for anisotro-

pic scatterers into expressions whose mathematical forms are

as close as possible to those for isotropic scatterers.

In the remainder of the paper an asterisk will denote a

reduced quantity. These are defined in section 2.1. Substituting

them into the equations formulated in 2.2 gives the reduced

equations. For visible radiation, (12a), (12b), and (18) become

1 02_o*(z *, t*)
*2 *: *

4 0T,*p 2 -- 7,, _o,,t$,,, t*)

w* 1 + _Od2tZoV*

- F(t) 4_r 17_7,, e-_'_'_")' (22a)

w *, [30_ e __,,i,.),
- F(t*) 47r 1 - [3_

(22b)

with the boundary condition

1 Oq_*(O, t*) F(t*) w* [3,, (22c)
q_,*(O, t *) 2 Or,* 4 _r 1 7 -_ "

For thermal radiation, (16a), (16b), and (19) become

2 * *
1 8 _or(r_, t*)

• 2 * *

4 Or*rE - 7r[q_r(rr, t*) - T*a(Z*r, t*)], (23a)

1 * *Oq_r(rr, t*)
• * - (23b)

Aq_r(rr, t*) 2 Or*r '

with the boundary condition

1 *0q_ r(0, t*)

q_'*r(O, t*) = _ Or*r (23c)

Arbitrarily choosing r_ as the reduced spatial variable, the

reduced heat transfer equation (17) becomes

OT*(r*r, t*) OZT*(r*r, t*)

at* O "I"*T2

*2 * *
+ 4¢rq3*r [q_r(rr, t*) - T*4(r*r, t*)]

+ Rq3,*2[F(t)e -':/_r'_t'> + 47rq_,(ro, t*)], (24a)

with the boundary condition

0T*(0, t*)/Or*r = 0. (24b)

Inserting (23a) into (24a) gives an alternate form of the re-

duced heat equation:

OT*(r*r, t*) O2T*(rr, t*) 2 ** O _r(rr, t*)

at* =- 0r_2 + qrq Or,r2

+ Rqy*2[F(t)e -':'/"g''(t*) + 4rrq_ _*(r,*,, t*)]. (24c)

If there is no visible source, the last term on the right band side

of (24a) or (24c) vanishes. Other conditions on the solutions of

these equations are that * * and T*q__, q_r, must be finite and

* * T*4:r * t). (25)_or(rr, t) _ _ r,

2.4. Physical Meaning and Magnitudes

of Parameters

The diffusion time may be written t o = pCATLET/(kAT/

LET.), where AT is an arbitrary, small rise in temperature and

LEt = E_' is the thermal extinction length. From this it is
seen that t o is time to raise the temperature of a layer of

thickness L_r by AT when a flux of heat kAT/L_r is con-

ducted through the layer.

The physical meaning of the parameter q = _oT4/_E*rkTr

may be seen as follows. The numerator, _oT4/_r = J_, char-

acterizes the radiant power incident in the medium, while the

denominator, E*_T_ = kTr/L*_r, characterizes the flux of

heat conducted by a temperature gradient of TiLer. Now,

the first term on the right-hand side of (24a) describes, in

reduced form, the net flux of heat conducted through a layer
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and the second term describes the net flux of power carried by

thermal radiation through that layer. Hence rrq is a measure of

the ratio of the heat conducted by radiation to that carried by

solid state conduction.

To illustrate the magnitude of some of these parameters,

ignore the subscripts v and T for the moment. Consider a

simple medium composed of N particles per unit volume of

equant, isotropically scattering particles of average diameter d

and solid density Ps. The bulk density is p = Np.drd3/6, and

the particle cross-sectional area is o- = "rrd2/4. Hence E =

no-QE _ (3/2)do(QJd), where 4_ = P/Ps is the filling factor.

For particles larger than the wavelength relatively close to each

other in a regolith, QE = 1 [Hapke, 1993a] so that the extinc-

tion length is L E = E _ _ 2d/3&. In loosely packed partic-

ulate media, such as the upper surface of the lunar regolith, _b

can be as small as 0.3 [Carrier et al., 1973], so that L E - 2d.

Apollo lunar soil samples have mean particle sizes around 50

lxm [McKay et al., 1974]. Hence, for impact-generated rego-

liths, L E- 100 /xm, andE -- 1 × 104 m -1.

For a medium illuminated by the Sun, J,, = 1360/D 2 W

m -2, where D is the distance to the Sun in AU, so T r =

(_rJv/o.o)l/4/_/_ = 524/_/_ K. The temperature-indepen-

dent component of the thermal conductivity of basaltic pow-

ders, including lunar soil, depends on the density, but k =

0.001 W m -1 K -1 is typical for densities around 1 g/cm 3

[Fountain and West, 1970]. Hence q = 0.26 D 3/2, which

ranges from 1.07 for Mercury to 0.023 for a satellite of Jupiter.

The specific heat per unit mass of lunar soil depends on the

temperature, but averages about C = 550 J kg-_ K-_ over the

temperature range from 100 to 350 K [Horai and Simmons,

1972]. Taking p = 1 × 103 kg m 3, gives t D _ 5.5 s.

3. A Medium Heated From Below

3.1. Solution

The first solution that will be obtained is for a system con-

sisting of a thick layer of powder in vacuum lying on a plate

held at constant temperature Tp and radiating into cold space

from its upper surface. This might represent the situation in a

laboratory measurement of emissivity where the surface of the

sample sees only other surfaces at temperatures close to abso-

lute zero.

For this problem, dT*/dt* = 0, Jr, = 0, q_* = 0, and q =
3 *

o-oTr/zrE rk. Choose the reference temperature T r to be the

temperature of the heated bottom plate Tp. Let the emissivity

of this plate be gp and the optical thickness of the powder at

the plate be rrp, so that its reduced optical thickness is r Tp =

_2r7>. Then equation (24c) is

diT.(r*_) 2 * *d q_r(rr)
+ _rq - 0, (26)

d r*r 2 dry. 2

where T* = T/Tp is the temperature relative to that of the

plate.

Integrating (26) from 0 to r* gives

dT* dT* [dq_ d_o*r ]

dr*_ (r_) - _dr r (0) + _qL _ (_*_)- _ (o)j = o.

Applying the boundary conditions (23c) and (24b) at the sur-

face, this equation becomes

dr* d_#_ * (27)
drT* (r'r) + rrq _drr (r_) = 2rrqq_,

where the subscript s denotes the value at the surface:

_ = _(0).

Integrating again gives

r*(r_) r*+ * * - * *- _rq[_pr(rT) _P_s] = 2rrqq_T_rT, (28)

where

T* = T*(0).

This equation shows that the sum of the reduced temperature

and _-q times the reduced thermal flux increases linearly with

optical depth through the powder.
• * * *

At r r = rrp, T (rTp) = rp 1. The boundary condition

on q0T comes from requiring that the upward radiance at the

plate is the sum of radiance emitted by the plate plus the

downward radiance from the powder reflected by the plate;

that is,

It, ( rr,,) = e,,o'oT,_,l_r+Splr2( rr,,),

where Sp is the reflection coefficient of the plate integrated

over the upward hemisphere. By KirchhotFs law, Sp = i - ep.

Converting to reduced quantities, and using (14) and (23b),

this boundary condition becomes

= _,,)[_ _(r>) - Aq,_(rrp],q_r(r>)+kq_r(rr_) %+(1- * * * *

or

dq_ . %' [1 - q_Tp(r_-p)]. (29)
dr*r (rrp) = 2 e_

However, if the optical thickness of the powder is so large

that near the plate the medium is in thermodynamic equilib-

rium, then * .4 * = * equation (28)qOT_- Tp = 1, sothatatr r Trp,

becomes,

1 T* + _rq(1 _pg) * *- - = 2zrqq_rsrrp,

which gives the simpler condition

1-T,+wq

q_'_ - _rq(1 + 2r_p) " (30)

In order to complete the solution another relation between

T* and q_- is needed. This is provided by the solution to the

thermal radiation equation (23a). Unfortunately, this equation

is nonlinear and must be solved numerically. A program was

written to solve (23) and (28) using the method of finite dif-

ferences. The program starts by estimating a value for T* and

using (30) to calculate a corresponding value for q_rs.* Using

the boundary conditions (23c) and (24b), the program inte-

grates (23a) and (28) to find values of q_ and T* for increasing

values of * If the guess for T* is incorrect, q_T and T .4
T T -

rapidly diverge. Then a new value for T* is chosen, and the

process repeated until T .4 and q_T converge and also are

insignificantly different from 1.00 at r T = r Tp"

Figure 2 showS the results of such a calculation for r Tp =

• is repre-• = 0.36. This value for WT10, q = 0.26, and WT

sentative of the single scattering albedo of a particle larger

than the wavelength in the thermal IR where strong rest-

strahlen bands occur, and q is appropriate for an Earth labo-

ratory simulating lunar surface conditions. The reduced tem-

perature T* starts at T* _ 0.6 with zero slope, as required by

the boundary condition, and then rises with a steadily deceas-

ing slope to 1 at r T>. The reduced thermal flux increases
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Figure 2. Reduced temperature and thermal radiance as a

function of reduced optical depth in a layer of powder in

vacuum lying on a heated plate and radiating into a cold

environment from its upper surface. Parameters are r*rp = 10,

* = 0.36, q = 0.26. Solid line is exact calculation; dashedWT

line is boundary layer approximation.

rapidly from its surface value q_*v_.-_ 0,07 with the required

initial slope of 2q_-, and then increases more gradually to 1 at

rTp. When 2"/TZ T > 3, q_, is within a few percent of T .4,

and the medium is in approximate thermodynamic equilibrium

with the thermal radiation.

The rise in temperature near the surface has been pointed

out previously by Henderson and Jakosky [1994]. It is caused by

the leakage of thermal radiation from the surface, which is also

responsible for the near-surface gradient of q_*r- Within this

boundary layer, which is of the order of 1/7"r in optical thick-

ness, the heat carried toward the surface by conduction is

converted entirely into thermal radiation.

3.2. Boundary Layer Approximation

It would be convenient if an analytical solution to (23a)

could be found. This is difficult because the equation is non-

linear. However, an approximate analytical solution that is

accurate to a few percent can be derived as follows.

Rewriting (23a),

4 a20*r
_. = r .4

,)1"l.4 0_.2,."

Now, the deep interior is in thermodynamic equilibrium so that

* _ T*4q_ T there, showing that the second term on the right-

hand side of the last equation is appreciable only near the

surface of the medium. However, at the surface, dT*/dr*r _-

0, so that the temperature is almost constant there, T* = T*.

In the near-surface region the solution to (23a) with T* con-

stant and that satisfies the boundary condition (23c) is

q_T(rr) = TI_ 4 q_7:_e 2yj_rT_

3'r

These arguments suggest that the thermal flux may be approx-

imated by

q_r(rT ) __ T*4(C_) _ 9 *_"_°-2W_;;. (31)
TT

* = 0, this equation isAt "r T

* T .4 (32)
q_- 1+3,_ "

which is a second relation between q_T_,'' and T'_ and can be

used along with (30) to solve for these quantities.

Using the boundary layer approximation, (28) becomes

[ * 1qO Ts e 2y_rJ! -- *T*(@) - TI_ + _rq T*4(@) -_c. q3Ts
• TT

* * (33)= 2rrq_r_rr,

* T* = 1, and this isAt r'_ = r Tp,

I * 1_ e-2_¢G *
1- k Yr _o*r.,, + _rq 1- _ - q_7_

* * (34)= 2rrqq)T_rrp,

which is a transcendental equation that may be rapidly solved
for *_oT_ by iteration. The solution is then completed by insert-

ing *T, into (32) and solving for T*. These approximate so-

lutions (equations (31) and (33)) are plotted as the dashed

lines in Figure 2.

Converting (33) to real units gives the approximate solution

for the temperature

frO [ O-0T4 _T ]T = Ts + 2q_T,_2rr -- + -- q_T_e 2_';,'_'rrr + @rs ,

(TO 4 T_" ")t T
Tr

"iT

(35)

7r 4 *where T, = TrT* and q_r, = (o'0/)T,-q_r._-

The flux of heat carried by radiative conductivity can be seen

explicitly as follows. Substituting the boundary layer approxi-

mation for q_- into (27) for the gradient of T* gives

dr_ (r_,) + _rq 4r'3(_-_) dr*

= 2 rrq q_'_,.

Converting to unstarred quantities, this equation can be put
into the form

dT(z) [ 4cr°T3(z) dT(z) ]-k _ + E T dz I- 2_r_ 2 _7xe 2{,-r7_wr

The first term on the left-hand side of the last equation is the

flux of heat carried from the hot plate to the surface by con-

ductivity, while the term in brackets describes the flux of heat

carried by radiation. This expression shows that far from the

surface, the radiation contribution to the thermal conductivity

is proportional to T 3, as is commonly assumed. However, this

assumption is not valid in the boundary layer because it ne-

glects the second term in brackets, which is important near the

surface. The IR radiance that is measured by instrUments

above the surface comes from this boundary layer.
The thermal flux radiated from the surface and the effective

temperature at which the surface radiates into the space can be

estimated using the boundary layer approximation and equa-

tions (14) and (32). The thermal power emitted from unit area
of the sUrface is
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f f w/2
PT = Irl(O) COS e dO = Irl(O) cos e 2_r sin ede

2w 0

= win(0) = 7r[q_r(0) + Aq_r(0)] = 27rpT(0)

TT T_- 2T_. o.0T 4
= 2rr GO_rT4 _:_ _ 2G°T4 1 + V'_' 1 + Vr

= eho-oT 4, (36)

where e_, is the hemispherical emissivity. Hence the medium

radiates into space at an effective temperature T_, which is

approximately equal to its actual surface temperature, and with

a hemispherical emissivity

eh = 2T_/(1 + T'r) = 2yr/(_'r + Yr)- (37)

4. Planetary Regolith in Equilibrium

With Sunlight

4.1. Solution

The second case to be considered is a semi-infinite particu-

late medium permanently facing the Sun. In the classical

steady state problem all absorption and emission of radiation is
assumed to take place at the surface, so that the heat equation

is simply 02T(z)/Oz 2 = O. The only solution to this problem

is T(z) = const. If the temperature of the medium is T(z) =

T,., and letting the medium have hemispherical albedoAt, and

hemispherical emissivity %, where both A/, and s h are as-
sumed to be constants of the surface independent of i and e,

then the visible sunlight absorbed, (1 - A_,)J_,_o, is equal to

the thermal power radiated, %o-oT 4, giving

Te = [ (1 - A h)J #Lo/ehO'o] I/4.

A more accurate model retains the assumption that the

temperature throughout the medium is constant, but solves the

visible and IR equations of radiative transfer to obtainAh and

e h. This is done by Hapke [1993a, b], where it is shown that a

medium of isotropic scatterers has a hemispherical albedo

(directional-hemispherical reflectance)

Ah(w_,, /x0) = 1 - %,H(w,,, /x0), (38)

and a hemispherical emissivity

¢h(Wr) -- 2TrHt(w'r), (39)

where H(w, x) is the solution of the integral equation

w _ ' H(w, x,')H(w,x) = l +_xH(w,x) x+x; dx', (40)
a 0

and may be approximated by

H(w, x) _- (1 + 2x)/(1 + 2yx), (41)

so that

Ah(w_,, /_0) = (1 - %,)/(1 + 2%,ix0), (42)

and Hi(w) is the first moment of the H function and may be

approximated by

H,(w) : I4(w, x) xdx = _ 1 + g _ , (43)
0

giving

(2yr 1 +
ej,(Wr) - 1 + Tr 6 1 7 "

(44)

Thus,

= [JA, o %H(wv, /-L0)] 1/4
Te I_ O-o _w_-J

[ J'lx'I+2Ix''I+vT _TTI TM (45)
= % 1 + 2%,/xo 2Tr 1 1 - ')/T

GO 1+_1

If the IR reflectance of the medium is small, as is often the case

because of the strong reststrahlen bands there, TT is close to

one and the factor (1 - TT)/6(1 + TT) in (44) and (45) may

be neglected.

The restrictions that the temperature of the medium is con-

stant and that the particles scatter isotropically will now be

dropped. Instead, the steady state heat equation and the visible

and IR radiative transfer equations given in section 2 will be

solved.

For the steady state, OT*/Ot* = 0, txo,,. = const and

F(t*) = 1. Then (22)-(24) are

2 * *

1 d q_,, .2 * w _, 1 + _,,/2lXo,,* (46a)
4 d"r_ 2 - T,, _ v 47r 1 - _,, e-':_;:"

1 d_o,: w** j8,,

_,,(o) - _ w_ (o) -dr,, 4rr 1 [3,,
(46b)

1 d2q_ • 2 *

4 dr_ 2 - TT (q>r-- T*4), (47a)

ldq_ _.

_p,_,(0) = _ _ (o), (47b)

d2T* d2_" _ .2_...:/_¢,, __ 4_rq_ ,*],
dry. 2 + wq dry2 - -_xqy,, te

(48a)

dT*

dr*_, (0) = 0. (48b)

Equation (46a) for the visible flux is independent of the

other two equations and can be solved separately. The solution

satisfying the boundary condition that the flux is finite at in-

finity is

q_'_,= A 'e _':/_;'+ B 'e-2_:_'_ (49a)

The coefficient B' can be found by substituting this solution

into the differential equation (46a) and equating coefficients of

* * . texp (- r _,//x by), A can be found by substituting the solution

into the boundary condition (46b). This gives

* *2 *
w,, 4/*o,,(1 + /3,/2/*o,)

A' = - 4rr (1 - /3_,)(! - _Y_,".2t.o,,.2, (49b)

, *2 *
1 2/*o,,(1 - T*,)[(1 + 2/.,_,,) + /3,,(! + 2T,, ,U.o,,)]

B'=
- 4T,;/*o,,)(1 - /3,,)4_r (1 *2 *2

(49c)

Inserting this solution into (48a), the heat transfer equation

becomes
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Figure 3. Reduced temperature and thermal radiance as a

function of reduced optical depth in a regolith in vacuum in

equilibrium with sunlight, showing the effect of varying the

angle of incidence i. Parameters are w* = 0.36, w r = 0.36,

q = 0.26. Solid line is exact calculation; dashed line is bound-

ary layer approximation.

d2T* d2q_*r Rqy.Z[Ae R,_//,.+ Be 2v;:m4;], (50a)
dr2. + /xq dry2 -

where

A = 1 + 47rA'

*2 *1 + 2/x_,,2 (1 - 2/x_,,- /3,,(1 - 2y,,/_o,,)

1 n *2 *2- '+7_/x0,, 1 -/3,,

(50b)

27,,/z 0,,)]7,,)[(1 + /3,,(1 + *2 *2/*o,,(1 - 2_m,) +
B = 4_rB' =

(1 - 47",2/xm2)(1 - /3J

(5Oc)

Integrating (50a) once with respect to r_ from 0 to r_ and

applying the boundary conditions gives

.r* ,]dr_ (r_) + _rq - 2pr,

_^,*2[A_* [_-R'_??tG, O (e_2v,,R._¢_ 1)] (51)= L.  0v,o - 1) + 27, '

where

q_, = q_(O). (52)

Integrating again gives

r*(r*_) - T* + _rg[q_r('rr)** - _o_- 2q_0-_]**

=-qy,, Alzov

+_'23,B [1,, _2y_, (e-2_;m-1)+'rr]} '* (53)

where

T_= T*(0). (54)

However, T* must retain finite as q-_- _ c,. The only way this

can be true is if the sum of the coefficients of r_ vanishes; thus

2_rq_:, *2 * *= y,, (A/x 0,, + B/27,,). (55)

After substituting (50b) and (50c) and simplifying algebra-

ically, this becomes

q°r' 2_r(1 + 27,,/x0,)

• 2 *
(1 + 2/x(_,,) + /3,,(1 - 2,/; - 2yv/x0_)

(1 - /3,,) (56)

Thus the solution to the heat transfer equation is

T*(r*_) - T* + _rq(q_r(rr) - 9,,:,,]

q [A *2 .2/t e Rr?Ttd,) e-2v,TRr;!)].= -- y_ IXo_U - + B/4 (1 - (57)
R

Now, deep in the interior of the medium as r r _ _, q__,

0, T* and P*r become constant; hence dZqo_/dr2 T = 0, and

q_(_) = T*4(w). Thus, as r _ % equation (57) becomes

T*(oo)- T*+ 'n-qT*4(oo)

q[w_o_ + (l/R) " ,2 • 2a _1_B/4)]. (58)

This is an alternate boundary condition.

Equations (47) and (48) were solved numerically by the

method of finite differences in a manner similar to that used in

section 3. The procedure starts by guessing a value for T* and

integrating inward from the surface, with q_ given by (56). If

the guess for T* is incorrect, the numerical solutions for q_-

and T .4 rapidly diverge, in which case the integration is

stopped, a new value for T* is estimated, and the procedure is

repeated until a value is found for T* that allows _p_. and T .4

to converge with increasing *T T .

The results of the numerical calculation are shown as the

solid lines in Figures 3-6, which illustrate the effects of varying

the parameters of the solutions. In Figures 3-6 it was assumed

that the particles are isotropic scatterers and that Ev = ET, so
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Figure 4. Reduced temperature and thermal radiance as a

function of reduced optical depth in a regolith in vacuum in
equilibrium with sunlight, showing the effect of varying the

visible single scattering albedo w*,. Parameters are w r =

0.36, q = 0.26, i = 0. Solid line is exact calculation; dashed

line is boundary layer approximation.
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that R = 1 and ZT = ¢_," The value for the visual single

scattering albedo of w*, = 0.36 might be representative of a

relatively low albedo body, such as the Moon or an asteroid.

The high value, w*, = 0.91, might be representative of some-

what dirty ice on the surface of a rocky-icy satellite, and w*, =

0.9996, representative of clean, fresh frost or snow. In the

* = 0.36, is probably representative of mostthermal IR, w T
* =materials. A value of w T 0.91 probably is unrealistically

high for most materials of planetary interest because rest-
strahlen bands are common in most materials at IR wave-

lengths; however, it is included to show the effect of a material

of high IR albedo, such as an alkali halide.
* increases, q_- risesIn all cases, as the optical depth _'r

rapidly from a value of (OTs*at the surface, as required by the

boundary condition, and then levels off either to a constant

value or to a more gentle rate of increase. The rapid rise is a

direct result of leakage of thermal radiation from the surface.

The medium approaches thermodynamic equilibrium when

*>3.
T T

The behavior of T* is more complex. The slope of T* is zero

at the surface, as required by the boundary condition, but as +_-

increases, T* may exhibit a positive or negative slope, depend-

ing on the relative value of 3'_ compared with 3'* and/Xo.* If

these quantities are comparable, T* has a positive slope. How-

ever, the slope of T* may be small or even negative if 3'_ is

small. Heating by unscattered visible radiation occurs over an
2

optical depth of the order of 1�IX*o,, = 1/_/_o and by multiply
scattered visible radiation over 1/3'* = _J3"v, but the IR flux

is radiated from the surface over an optical depth of the order

= 1//_ or, orof 1/3'_- _r/3'r. If 1/3'_ is larger than * 1/3'% then

heat must be conducted from the visible heating source, which

is closer to the surface, to supply power to the deeper IR

radiative sink. This requires a negative temperature gradient.

Thus, when i is large a negative greenhouse effect can occur.

Henderson and Jakosky [1994, also submitted manuscript, 1995]

have previously pointed out that large positive subsurface tem-

perature gradients are possible, but they did not investigate

cases where the gradient was small or negative. It should also

be emphasized that the widths of the gradients in actual depth
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Figure 5. Reduced temperature and thermal radiance as a
function of reduced optical depth in a regolith in vacuum in

equilibrium with sunlight, showing the effect of varying the
* Parameters are w*, =thermal single scattering albedo w T"

0.36, q = 0.26, i = 0. Solid line is exact calculation; dashed

line is boundary layer approximation.
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Figure 6. Reduced temperature and thermal radiance as a

function of reduced optical depth in a regolith in vacuum in

equilibrium with sunlight, showing the effect of varying, the
radiative conductivity parameter q. Parameters are w_ =

* = 0.36, i = 0. Solid line is exact calculation;0.36, w T
dashed line is boundary layer approximation.

z (rather than in reduced depth _'_-) will depend inversely on

the particle density or filling factor.

As shown in Figure 6, the parameter q has a relatively small

effect on the reduced variables (although, of course, the abso-

lute effect can be large). The reason can be seen from (58) for

the total rise in temperature. As q increases, the visible heating

increases, which increases T*(oo) - T*, but the radiative

conductivity also increases, which limits the rise in tempera-

ture.

Substituting the boundary layer approximation

q_r.,. -2 _,-_ (59)q_(l"_-) - T*4('r_ -) - ---E- e _ ,
3'T

into (57) gives an approximate expression for T*,

1 * * ,

T*(I"_-) = T*- "n'qZ*4('r_ -) - 3'_. qO*Tse-2_ra- q_Ts]

q[ *2 2A[1 a-Rr'_'llz,'_,,, B _o o]+ _ 3",, iZo,,._,,.-_ , + _- (1-e 2"Y"m9 , (60)

where

(l+v_ ,'_'/4
T*=\ 3'; q_,/ , (61)

and q_T., is given by (56). The boundary layer approximation

(equations (59)-(61) is plotted as dashed lines in Figures 3-6.

The exact and approximate solutions are within a few percent

of one another everywhere.

4.2. Emitted Thermal Radiance and

Hemispherical Albedo

The thermal flux radiated from the surface, the effective

temperature at which the surface radiates into space, and the

hemispherical emissivity can be determined in the same way as
was done in section 3 for the case of the powder heated from

below. From (36), the thermal power emitted from the surface

is



16,828 HAPKE:ENERGYTRANSFERMODEL

J ._ i_i__ '

, 5

, • .

0.35

0.3

0.25

"_" 0.2

--0.15

0.1

0.05

0

0

Figure 7.

• i ' O"° ....

................. 300

. . . I , , . I , . , I , i , I ,

20 40 60 80
e (degrees)

Thermal flux emerging from the surface of a rego-

lith in vacuum in equilibrium with sunlight as a function of the

angle of emergence e for various angles of incidence i. Param-

eters are w,, = 0.36, w T = 0.36,/3 v = 0,/38 = 0, q = 0.26.
Solid line is exact calculation; dashed line is constant subsur-

face temperature•

f
Pr = | In(O) cos e dl_ = 2Wq_r(0) = 27rJoq_)s

az 7r

* 23'2YT T_- troT 4. (62)
=27r T_I +7_ I+V_

Hence, to the accuracy of the boundary layer approximation,

the effective radiating temperature of the surface is

// 7]" 1 -I- _tt_- ) 1/4
T, = T y* = _ _ooJ,, --_-_r q_*r,, , (63)

and the hemispherical emissivity is

eh = 2y_(1 + Y2) = 2VT/(_T + 7T), (64)

which is the same result obtained in section 3.2 for the powder

heated by a bottom plate.

The visible hemispherical albedo (directional-hemispherical

reflectance) An(t%) of a surface in radiative equilibrium with

sunlight can be found from (56) for q)T** by noting that the

thermal power emitted per unit area must equal the visible

power absorbed per unit area; that is,

Pr = 2_'J_q)_, = J,,p,0[1 - Ah(tX0)].

Thus

2_-
Ah(_o) = 1 --

/%

2 *

(1 + 27,,tx0o)

(1 + 2/x;,,) + /3,,(1 * *2 *- 27_ t* o,,)23,,,-

1 -- /3v

=1
1 + 2_',,%/_o

2 2
(1 + 2_,,/x0) + /3,,(1 - 2y,]_o- 2%/*0)

1 - /3_

which can be further simplified to

, (65a)

C_-w L,-/3,,vv
Ah- 1 + 2_',,%/x0 1 -- /3,, (65b)

Comparing (65a) and (38) for Ah shows that the two are

identical when/3v = 0. Comparing (64) and (39) for eh shows

that when/3 r = 0, the two are the same if H1 (wr) is replaced

by its low-albedo approximation H_ (WT) = 1/(1 + 7T)" This

approximation is probably valid in most cases of interest, be-

cause strong reststrahlen bands cause the IR albedos of most

substances to be small.

By symmetry [Hapke, 1993a], the visible hemispherical-

directional reflectance has exactly the same form as (65a) or

(65b), except that P-o is replaced by p.. Also, the IR directional-

hemispherical, and hemispherical-directional reflectances have

the same forms as their visible counterparts, except that sub-

scripts v are replaced by T.

Hapke [1993a] shows that the IR radiance emerging from

the surface of a particulate medium is given by

£7[f4WT

IT(t*O, tX) = _ Ir(rr, IX, a')pr(fY, 1)) da'
_r

"1

2 _o [ e-_/_ drr (66)+ Yr _ T4(rr) IX "

In the two-stream approximation with the hemispherical asym-

metry factor, the integral over solid angle is

wTfIr(rr, IX, F_')pr(_', _) d£_' = WrPr(rT)
rr

+ [3TWTAq_T(rr). (67)

Substituting this into (66), changing to reduced quantities, and

using (23b) gives

IT(_o, _) = ]o L 1 -/3r w_-q_-_(r-_) + - --2 1-/3r

d *%*" *
, (PT(7") _'2 *2*4, *x] -,71-_ drr

"prWr_+grTrTtrT)Je _ _. (68)

Equation (68) was evaluated numerically to give I_-(_o, tz)

= IT(l%, P')/Jv versus e for a lunar-like regolith. The results

are shown as the solid lines inFigure 7.

4.3. Directional Emissivity and the Constant Subsurface
Temperature Approximation

The integrand in (68) contains terms proportional to q)_,
. . T.4 • •d_pr/dr T and multiplied by exp (--rr/txr). This inte-

grand is appreciable only over a distance of the order of 1//*r

from the surface. However, because of the zero initial slope of

T*, within the layer, T* is nearly constant. Hence the boundary

layer approximation with T* = T* may be used to obtain an

approximate evaluation of (68). This gives

Ir(l_o, IX) _-- = J,,T_ 1 + 2Vrl_r

(1 + 2/x_) + /3T(1 -- 2Vr* -- 2V*r/**})

1 - /3T (69)

Writing this in the form
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Ir(IZo, /*)= ed(/_L) _tr° 7_ (70) 1
0.9

shows that the effective radiating temperature of the medium 0.8

is approximately

* x I/4 ed(e ) 0.7

• T ( CT + ")IT _ Ts] (71a)T,_- r\ _/r or 0.6

where _o_-s is given by (56) and the directional emissivity is 1-Ah(i)O. 5

given by the approximate expression 0.4

_rYr (1 + 2_2_,) + /3r(1 27r/_r- 272/*) 0.3

8d(t'l') _ 1 + 2_rY_. 1 -- /3T
0.2

(71b)

If the particles scatter isotropically in the IR (/3T = 0), the

emissivity is

1 + 2_ _ "yTH(WT, IX), (72)
ed(/*) = YV-1 + 2yV/_

which has been previously derived by Hapke [1993@

It should be emphasized that (56) for *rs and (65a) or (65b)

for Ah(/zo) and the visible and thermal-IR directional-

hemispherical and hemispherical-directional reflectances are

exact and do not depend on the validity of the boundary layer

approximation. Equations (64) for eh and (71a) for T_. depend

on the boundary layer approximation but not the constant

subsurface temperature approximation. Expression (71b) for

ed(/Z ) depends on the validity of both the boundary layer and

constant subsurface temperature approximation. All of these

expressions include the effects of the gradient in _*v, which is

closer to the surface than the gradient in T*.

By combining (56), (71a), (71b), and (72), the surface tem-

perature can be written in the form T s = [(1 - Ah)Jvl*o/

(r 11/4 which is identical to the expression for the radiative
h 0]

equilibrium temperature T e derived at the beginning of this

section under the simp!e assumption that the temperature of

the medium is constant. Thus, allowing for a solid-state green-

house increases or decreases the temperature distribution in

the interior of the medium but does not alter the surface

temperature.

The approximate expressions (69)-(71) for Ir(/_o, P_) versus

e were calculated for the same values of the parameters as used

in the numerical evaluation of (68). The results are shown as

the dashed lines in Figure 7. The agreement between the exact

and approximate values is good when either i or e is large, but

there is a discrepancy of as much as 5% when both i and e are

small because of the neglect of the subsurface temperature

gradient in evaluating the integral in IT(Izo, Iz). If e is large,

the integrand in the expression for I r is appreciable only close

to the surface, where the temperature is approximately con-

stant. If i is large, the temperature gradient is small and its

neglect introduces little error. The gradient influences the

emergent radiance only when the surface is both viewed and

illuminated at nearly vertical angles.

The hemispherical-directional reflectance in the thermal-IR

is given by (65) with/z o replaced by/* and subscript v replaced

by T. By Kirchhoff's law [Hapke, 1993a], the directional emis-

sivity is the complement of the hemispherical-directional re-

flectance. Comparing (71b) with (65a) shows that this is indeed

true. However, (71b) is an approximation which is valid only

when a large subsurface temperature gradient is not present.

This is in agreement with the result previously obtained exper-

i I I I •

.............
13=0"- _" "-.'
I_ = -0.25 r

"w=0.91:_--. 5""_'"--.;.

/
i I I I , I , * i I i • , I •

0 20 40 60 80
e or i (degrees)

Figure 8. Directional emissivity ed(/_ ) as a function of angle

of emergence e and the complement of the hemispherical

albedo 1 - Ah(t*o ) as a function of angle of incidence i for
different values of the thermal or visible single scattering al-

bedo w and hemispherical asymmetry parameter/3.

imentally by Salisbury et al. [1994], who showed that Kirchhoff's

law is violated in media with large near-surface temperature

gradients.

The effect of single scattering albedo and asymmetry factor

on ed(t_) is plotted for a high and a low albedo in Figure 8.

Because 1 - Ah(P,o) has the same functional dependence on

/_o as ed(l_ ) does on p_, these curves also describe 1 -

Ah(lzo), as indicated in Figure 8. Making the particles more

forward scattering increases the directional emissivity and de-

creases the hemispherical albedo but does not change the

shapes of the curves appreciably.

4.4. Spectral Boundary Layer Approximation

For future use, it is of interest to write down explicitly the

unreduced boundary layer approximation for the thermal and

spectral fluxes in the IR. Converting the boundary layer ap-

proximation (equation (59)) to unstarred quantities gives for

the radiative flux integrated over thermal wavelengths,

o'0 T4(,rT ) -- _T (73)_r( rr) "='-_ Vr q_l:'e- Z_rvr_"

By analogy, the boundary layer approximation for the radiance

averaged over angle in the thermal-IR wavelength region

where the visible source spectral irradiance is negligible is

1 _a
-- Ux(T) - -- q_e -z_""", (74)

_(r_) = rr _,_

where

Ya 1
U_(T,), (75)

q_'- _+ %_r

T, = T_T*,

T* is given by (61) and (56), and T_ is the blackbody radiative

equilibrium temperature.

5. Conclusions

The temperature and thermal radiance in a planetary rego-

lith are governed by three equations: the equation of radiative
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transfer for visible and for IR radiation and the heat transfer

equation. These equations were written in terms of the two-

stream approximation, including anisotropic scattering, which

allows numerical solutions to be rapidly obtained. An approx-

imate analytic solution, the boundary layer approximation, to

the nonlinear thermal radiative transfer equation was ob-

tained. This approximation allows an analytic solution to the

heat equation to be derived that gives the distribution of tem-

perature and thermal radiance as a function of depth, and that

is accurate to a few percent. The equations intrinsically contain

radiative conductivity and result in a changing temperature

with depth, i.e., a solid-state greenhouse effect.

Using this formalism, the steady state cases of a powder

heated form below in the laboratory and a planetary regolith in

equilibrium with sunlight were studied. Subsurface tempera-

ture gradients that are positive, negative, or zero can occur,

depending on the thermal and radiative constants and the

geometry. Large gradients may occur in a layer only a few

particles thick or may be spread out over a large depth, de-

pending on the visible and IR radiative constants of the me-

dium. Approximate analytic expressions for the directional-

hemispherical albedo (equation (65)), the hemispherical

emissivity (equation (64)), and the directional emissivity

(equation (71)) for regoliths of anisotropically scattering par-
ticles were derived. This model was also used to study three

interesting problems in the thermal emission from planetary

regoliths by Hapke [this issue]. Using the same formalism, an

improved expression for the bidirectional reflectance of a re-

golith of highly anisotropically scattering particles was also

derived and will be the subject of a separate paper (B. Hapke,

manuscript in preparation, 1996).

Notation

Ah

C

Co

hemispherical albedo, equal to directional-

hemispherical reflectance.

specific heat per unit mass.

speed of light in vacuum.

mean diameter of a particle of type j, equal to

( 4o'jlrr) 112.

Ex(z), Ev(z), Ev(z ) spectral visible, and thermal volume

extinction coefficients, equal to

_}Uj(z)o-jQEx}, YTN}(z)o-}QEvj, and

Y,jN j( z )_jQ E,,T, respectively.

e zenith angle at which radiance emerges from

the medium toward the detector.

% x, %T spectral and thermal volume emission

coefficients, equal to Kx(z)/Ex(z) = 3'zx,

KT(Z)IET(Z ) = 3,2

F(t) function describing the time dependence of

the irradiance. (For a rotating body F(t) is a

square wave with period P: F(t) = 1 when

0 <- t <- P/2, and F(t) = 0 when P/2 < t < P.)

G _( z, 12', f_ ), G v( z, Ft ', 12), G T( Z, 12', 12) spectral

visible, and thermal volume angular scattering

coefficient s equal to ZjNj(z)_Qsxipxj(Ut', f_),

_jNj( z)o'jQsvjp,,j( _'_', _'_), and

Y,jN j( z ) _ jQ s Tjp rj(12 ' , 12) respectively, for

scattering radiation traveling in direction tq'

into direction 12.

/7 phase angle, equal to angle between the

directions to the source and detector as seen

from the medium.

if!

I-l(w, x)
Hi(w)

ho

angle between the direction 7r - 12' from
which the radiance comes and the direction l_

into which it is scattered.

(1 + 2x)/(1 + V_ - w x).

first moment of the H functions.

Planck's constant.

Ix(z , _, t), Iv(z, l), t), IT(Z, 12, t) spectral, visible, and

thermal radiances (diffuse radiant power per

unit area per unit solid angle), respectively.

I,,_ (z, t), Irl (Z, t) hemispherically averaged visible and

thermal radiances traveling into the upward

hemisphere.

Iv2(z , t) Ir2(z, t) hemispherically averaged visible and

thermal radiances traveling into the downward

hemisphere.

i(t) angle between 12o and z.

Jx, Jv spectral and visible irradiance, respectively

(collimated radiant power per unit area

perpendicular to the direction of propagation)

incident on the upper surface of the medium;

for planetary applications, Jx has the spectrum

of a blackbody with a temperature of 5770 K,

and Jv = S°/D2, where S° is the solar

constant, S° = 1360 W m -2 and D is the

distance to the sun in astronomical units.

j subscript denoting particle type.

Kx(z), Kv(z), KT(Z ) spectral, visible, and thermal volume

absorption coefficients, equal to

_jNj( z)o-jQAxj,_jNj( z)ojQAvj, and

Y.jNj(z)_rjQA Tj respectively.
k solidstatethermal conductivity.

k o Boltzmann's constant.

LEv , LET visibleand thermal extinctionlengths,equal to

I/E v and I/E T respectively.

Nj(z) number of particlesper unitvolume of typej.

P period of rotationof the body.

pxj(l_', _), p,,j(12',f_),PTj(12', _) spectral,visible,and

thermal angular phase functionsof a particle

of typej, respectively;ifthe particlesare

randomly oriented,the particlephase

functionsdepend only on 9'.

px(z, f_', f_), pv(z, 12', 12), pT(Z, _', _) spectral,

visible, and thermal average volume particle

scattering functions, equal to Gx(z, 12', 12)/Sx(z),

G,,(z, 12', f_)/Sv(z), and Gr(z, 12', 12)�St(z).

QAxj(z), QAvj(z), QArj(z) spectral, visible, and thermal
volume absorption efficiencies of a particle of

type j.

QExj(z), QEvj(z), QeTj(Z) spectral, visible, and thermal

volume extinction efficiencies of a particle of

type j.

Qsxj(z), Qsvj(z), Qsrj(z) spectral, visible, and thermal
volume scattering efficiencies of a particle of

type j.

Sx(z), Sv(z), ST(Z) spectral, visible, and thermal volume

scattering coefficients equal to ZjNj(z)(rjQsxj,

ZjNj( z)(rjes,,j , and Y,iNj( z)(rjQsrj

respectively.

T(z, t) absolute temperature.

T._.(t) surface temperature, equal to T(O, t)
t time.

Ux(T) Planck function.
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wa, w,,, wT spectral, visible, and thermal volume-average

single scattering albedos, equal to

Sx(z)/E_(z), Sv(z)/Ev(z), and

ST(Z)IET(Z).

z vertical position (positive upward).

13_, 13,,, /3T spectral, visible, and thermal hemispherical

asymmetry scattering parameters, respectively.

3'_, 3'_,, 3'T spectral, visible, and thermal albedo factors

equal to, (1 - wa) 1/2, (1 - Wv) 1/2, and

(1 - WT) I/2 respectively.

_ox(z, t), _v(z, t), q_T(Z, t) spectral, visible, and thermal

average isotropic radiant fluxes, respectively.

_0xs(t), _o,,s(t), OPTs(t) qgx(0 , t), q_,(0, t), and _T(0, t)

values of the spectral, visible, and thermal

fluxes equal to, respectively, at the surface.

Aq_a(z, t), A_,,(z, t), Aq_r(z, t) spectral, visible, and

thermal average radiant up-down flux

differences, respectively.

q5 filling factors, equal to P/Ps.

29 angle between _ and the normal to the

surface.

h wavelength.

/z cos e.

/xo(t ) cos i(t).

p bulk density.

Ps particle solid density.

crj(z) mean geometrical cross-sectional area of a

particle of type j.

o-o Stefan-Boltzmann constant.

,r;_(z)=fzE;_(z' ) dz, "rv(z ) = f: E,,(z') dz,

TT(Z) = fz ET(Z') dz spectral, visible, and

thermal optical depths, respectively.

dz_ -Ex(z ) dz, d%, = -E_,(z) dz,

dT"T = -ET(z) dz.
f_ direction into which the radiance is traveling

through an element of volume within the

medium.

f_o direction toward the source from the medium

(the incident irradiance travels into the

direction 7r - f_o).

C_=(1 - _w_) '/2, C_ : (1 - _w_,) ':_,
_T = (1 -- [3TWT) 1/2, spectral, visible, and

thermal asymmetry factors, respectively.

The following relations also hold:

cA: = QAai eTi = QATj.

%A(z) = K_(z) %v(z) = KT(Z).

Qsaj + QAaj = QE_j, Qs,,j + QA,,j = QE,,j, Qsrj + QATj = QErj.

Sa + K_ = Ea, S,, + K,, = E,,, Sr + Kr = ET.

3"_ = Kx/E_, %2, = KJE_,, 3'2 = KT/ET.

If the filling factor + of the medium is not small, Nj(z) must be

multiplied by the factor -ln(1 - 6)/4'.
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